# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (1*S*,2*S*,6*S*,9*S*)-6-Methyl-5-oxobicyclo-[4.4.0]decane-2,9-diyl diacetate

#### Riina Aav, Kristin Lippur, Margus Lopp and Franz Werner\*

Tallinn University of Technology, Department of Chemistry, Akadeemia tee 15, 12618 Tallinn, Estonia Correspondence e-mail: fwerner@chemnet.ee

Received 9 September 2010; accepted 13 September 2010

Key indicators: single-crystal X-ray study; T = 300 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.099; data-to-parameter ratio = 7.6.

The chiral title compound,  $C_{15}H_{22}O_5$ , is an intermediate in the total synthesis of biologically active 9,11-secosterols. In the crystal, the cyclohexane rings are *trans*-fused and both adopt chair conformations. In the crystal, molecules are loosely held together in a layer parallel to (100) by weak intermolcular C- $H \cdots O$  hydrogen bonds accepted by carbonyl O atoms of the acetyl groups.

#### **Related literature**

For background to the biological activity of 9,11-secosterols and the synthesis of the title compound, see: Aav *et al.* (2000). For a related structure, see: Foot *et al.* (2006). For hydrogen bonding, see: Steiner (2002).



#### **Experimental**

Crystal data

 $C_{15}H_{22}O_5$   $M_r = 282.33$ Monoclinic, C2 a = 22.885 (5) Å b = 9.340 (2) Å c = 7.2250 (13) Å $\beta = 101.280 (6)^{\circ}$  $V = 1514.5 (5) \text{ Å}^{3}$ Z = 4Mo K $\alpha$  radiation  $\mu = 0.09 \text{ mm}^{-1}$ T = 300 K

#### Data collection

Bruker SMART X2S benchtop diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) T<sub>min</sub> = 0.955, T<sub>max</sub> = 0.985

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.037 & 1 \text{ restraint} \\ wR(F^2) &= 0.099 & H-\text{atom parameters constrained} \\ S &= 1.05 & \Delta\rho_{\text{max}} = 0.15 \text{ e } \text{ \AA}^{-3} \\ 1413 \text{ reflections} & \Delta\rho_{\text{min}} = -0.14 \text{ e } \text{ \AA}^{-3} \end{split}$$

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D-H\cdots A$                         | D-H  | $H \cdots A$ | $D \cdots A$ | $D - H \cdots A$ |
|---------------------------------------|------|--------------|--------------|------------------|
|                                       |      |              |              |                  |
| $C8 - H8B \cdots O3^{i}$              | 0.97 | 2.62         | 3.551 (4)    | 161              |
| $C13 - H13C \cdot \cdot \cdot O3^{n}$ | 0.96 | 2.63         | 3.533 (4)    | 156              |
| $C8 - H8A \cdots O5^{m}$              | 0.97 | 2.44         | 3.309 (4)    | 149              |
| $C11 - H11A \cdots O5^{m}$            | 0.96 | 2.70         | 3.662 (4)    | 178              |

 $0.50 \times 0.20 \times 0.16 \text{ mm}$ 

4796 measured reflections

 $R_{\rm int} = 0.041$ 

1413 independent reflections

1226 reflections with  $I > 2\sigma(I)$ 

Symmetry codes: (i) x, y, z + 1; (ii)  $-x + \frac{1}{2}, y - \frac{1}{2}, -z$ ; (iii) x, y + 1, z.

Data collection: *GIS* (Bruker, 2010); cell refinement: *APEX2* (Bruker, 2010) and *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008*a*); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*.

The authors are grateful for funding through grant agreement No. 229830 IC–UP2 under the 7<sup>th</sup> Framework Programme of the European Commission.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2600).

#### References

- Aav, R., Kanger, T., Pehk, T. & Lopp, M. (2000). Synlett, 4, 529-531.
- Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2010). GIS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Foot, J. S., Phillis, A. T., Sharp, P. P., Willis, A. C. & Banwell, M. G. (2006). Tetrahedron Lett. 47, 6817–6820.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

supplementary materials

Acta Cryst. (2010). E66, o2584 [doi:10.1107/S1600536810036639]

## (1S,2S,6S,9S)-6-Methyl-5-oxobicyclo[4.4.0]decane-2,9-diyl diacetate

## R. Aav, K. Lippur, M. Lopp and F. Werner

#### Comment

At 300 K the enantiopure compound (1*S*,2*S*,6*S*,9*S*)-6-Methyl-5-oxobicyclo[4.4.0]decane-2,\9-diyl diacetate, (**I**), crystallizes in the chirodescriptive monoclinic space group *C*2 (No. 5) with one molecule in the asymmetric unit. Bond lengths and bond angles in the molecule are normal. The *trans*-fused cyclohexane rings both adopt chair conformation. The acetyl groups are inclined to the least-squares plane, defined by the carbon atoms of the cyclohexane rings, by ~46.4 (O2O3C12C13) and ~51.2° (O4O5C14C15), respectively (Fig. 1). The molecules are loosely hold together in layers parallel to the *A*-plane with a repeating distance of  $d_{100}/2$ ~11.2 Å, within which weak intra- and intermolecular hydrogen bonds (Steiner, 2002) occur (Fig, 2, Table 1). Between the layers only hydrophobic interactions are present.

### **Experimental**

Enantiopure (I) was synthesized according to Aav *et al.* (2000). Single crystals were grown by slow evaporation of a solution of (I) in acetone/petrol ether.

#### Refinement

Owing to absence of significant anomalous scattering, Friedel pairs were merged and all  $f^{"}$  values were set to zero for the final refinement. The absolute structure was assigned from the synthetic procedure. Hydrogen atoms were included at calculated positions [d(C-H) = 0.96 (CH<sub>3</sub>), 0.97 (CH<sub>2</sub>) or 0.98 Å (CH)] and treated as riding on their base atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$  (CH<sub>2</sub> and CH) or  $1.5U_{eq}(C)$  (CH<sub>3</sub>).

#### Figures



Fig. 1. Asymmetric unit in the crystal structure of (I). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Cyan dashed lines indicate weak hydrogen bonds. [Symmetry codes: (i) x, y, 1 + z; (ii) x, 1 + y, z; (iii) 1/2 - x, 1/2 + y, -z; (iv) x, y, -1 + z; (v) 1/2 - x, -1/2 + y, -z; (vi) x, -1 + y, z.]

Fig. 2. Packing diagram of (I). Red planes indicate the boundaries of the layers within which weak hydrogen bonds occur. The unit cell is outlined.

# (1*S*,2*S*,6*S*,9*S*)-\ 6-Methyl-5-oxobicyclo[4.4.0]decane-2,9-diyl diacetate

## Crystal data

| C <sub>15</sub> H <sub>22</sub> O <sub>5</sub> | F(000) = 608                                          |
|------------------------------------------------|-------------------------------------------------------|
| $M_r = 282.33$                                 | $D_{\rm x} = 1.238 {\rm Mg} {\rm m}^{-3}$             |
| Monoclinic, C2                                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: C 2y                              | Cell parameters from 2044 reflections                 |
| a = 22.885 (5)  Å                              | $\theta = 2.4 - 23.9^{\circ}$                         |
| b = 9.340(2) Å                                 | $\mu = 0.09 \text{ mm}^{-1}$                          |
| c = 7.2250 (13)  Å                             | T = 300  K                                            |
| $\beta = 101.280 \ (6)^{\circ}$                | Needle, colorless                                     |
| V = 1514.5 (5) Å <sup>3</sup>                  | $0.50\times0.20\times0.16~mm$                         |
| Z = 4                                          |                                                       |

#### Data collection

| Bruker SMART X2S benchtop<br>diffractometer                                    | 1413 independent reflections                                          |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Radiation source: XOS X-beam microfocus source                                 | 1226 reflections with $I > 2\sigma(I)$                                |
| doubly curved silicon crystal                                                  | $R_{\rm int} = 0.041$                                                 |
| ω scans                                                                        | $\theta_{\text{max}} = 25.0^\circ, \ \theta_{\text{min}} = 2.4^\circ$ |
| Absorption correction: multi-scan ( <i>SADABS</i> ; Sheldrick, 2008 <i>b</i> ) | $h = -27 \rightarrow 27$                                              |
| $T_{\min} = 0.955, T_{\max} = 0.985$                                           | $k = -11 \rightarrow 11$                                              |
| 4796 measured reflections                                                      | $l = -7 \rightarrow 8$                                                |
|                                                                                |                                                                       |

## Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                                                                             |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                                                                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.037$                        | H-atom parameters constrained                                                                                                                    |
| $wR(F^2) = 0.099$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.0812P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                              |
| <i>S</i> = 1.05                                        | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                                              |
| 1413 reflections                                       | $\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$                                                                                            |
| 185 parameters                                         | $\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$                                                                                       |
| 1 restraint                                            | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008a),<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(20)] <sup>-1/4</sup> |
| Primary atom site location: structure-invariant direct | Extinction coefficient: 0.010 (2)                                                                                                                |

methods

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | У            | Ζ          | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|--------------|------------|---------------------------|
| C1   | 0.41782 (12) | 0.1268 (3)   | 0.8403 (4) | 0.0548 (7)                |
| H1A  | 0.4505       | 0.1429       | 0.9460     | 0.066*                    |
| H1B  | 0.3854       | 0.0837       | 0.8891     | 0.066*                    |
| C2   | 0.43814 (13) | 0.0228 (3)   | 0.7031 (5) | 0.0603 (8)                |
| H2A  | 0.4735       | 0.0603       | 0.6649     | 0.072*                    |
| H2B  | 0.4484       | -0.0683      | 0.7656     | 0.072*                    |
| C3   | 0.38967 (12) | 0.0004 (3)   | 0.5307 (4) | 0.0507 (7)                |
| H3   | 0.3559       | -0.0484      | 0.5683     | 0.061*                    |
| C4   | 0.36824 (12) | 0.1415 (3)   | 0.4352 (4) | 0.0481 (6)                |
| H4B  | 0.3359       | 0.1237       | 0.3292     | 0.058*                    |
| H4A  | 0.4005       | 0.1868       | 0.3878     | 0.058*                    |
| C5   | 0.34678 (11) | 0.2411 (2)   | 0.5769 (4) | 0.0417 (6)                |
| Н5   | 0.3154       | 0.1895       | 0.6241     | 0.050*                    |
| C6   | 0.31877 (12) | 0.3794 (3)   | 0.4877 (4) | 0.0460 (6)                |
| H6   | 0.3485       | 0.4372       | 0.4405     | 0.055*                    |
| C7   | 0.29180 (14) | 0.4638 (3)   | 0.6307 (4) | 0.0619 (8)                |
| H7B  | 0.2590       | 0.4099       | 0.6630     | 0.074*                    |
| H7A  | 0.2761       | 0.5536       | 0.5745     | 0.074*                    |
| C8   | 0.33767 (15) | 0.4945 (3)   | 0.8099 (4) | 0.0625 (8)                |
| H8A  | 0.3653       | 0.5665       | 0.7822     | 0.075*                    |
| H8B  | 0.3174       | 0.5338       | 0.9044     | 0.075*                    |
| C9   | 0.37226 (13) | 0.3646 (3)   | 0.8900 (4) | 0.0559 (7)                |
| 01   | 0.38133 (13) | 0.3386 (3)   | 1.0571 (3) | 0.0894 (8)                |
| C10  | 0.39716 (11) | 0.2710 (3)   | 0.7505 (4) | 0.0458 (6)                |
| C11  | 0.45030 (12) | 0.3532 (4)   | 0.6993 (4) | 0.0619 (7)                |
| H11A | 0.4377       | 0.4477       | 0.6568     | 0.093*                    |
| H11B | 0.4645       | 0.3033       | 0.6006     | 0.093*                    |
| H11C | 0.4817       | 0.3598       | 0.8085     | 0.093*                    |
| 02   | 0.27152 (7)  | 0.33569 (19) | 0.3333 (2) | 0.0510 (5)                |
| C12  | 0.25230 (13) | 0.4324 (3)   | 0.1969 (4) | 0.0523 (7)                |
| O3   | 0.26894 (10) | 0.5536 (2)   | 0.2034 (3) | 0.0678 (6)                |
| C13  | 0.20704 (15) | 0.3674 (4)   | 0.0446 (4) | 0.0689 (9)                |
| H13A | 0.1906       | 0.4400       | -0.0446    | 0.103*                    |
|      |              |              |            |                           |

# supplementary materials

| H13B | 0.1758       | 0.3257        | 0.0982     | 0.103*      |
|------|--------------|---------------|------------|-------------|
| H13C | 0.2254       | 0.2945        | -0.0183    | 0.103*      |
| O4   | 0.41045 (9)  | -0.08472 (18) | 0.3880 (3) | 0.0610 (6)  |
| C14  | 0.41311 (14) | -0.2269 (3)   | 0.4139 (5) | 0.0673 (9)  |
| 05   | 0.40094 (15) | -0.2845 (3)   | 0.5499 (5) | 0.1017 (10) |
| C15  | 0.43333 (19) | -0.3023 (4)   | 0.2556 (6) | 0.0896 (12) |
| H15A | 0.4749       | -0.3250       | 0.2920     | 0.134*      |
| H15B | 0.4272       | -0.2414       | 0.1464     | 0.134*      |
| H15C | 0.4109       | -0.3889       | 0.2263     | 0.134*      |
|      |              |               |            |             |

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0477 (15) | 0.0635 (17) | 0.0480 (15) | -0.0007 (12) | -0.0035 (12) | 0.0094 (13)  |
| C2  | 0.0505 (16) | 0.0594 (17) | 0.0648 (19) | 0.0099 (13)  | -0.0041 (14) | 0.0092 (14)  |
| C3  | 0.0501 (15) | 0.0431 (12) | 0.0586 (17) | 0.0034 (11)  | 0.0097 (13)  | 0.0039 (13)  |
| C4  | 0.0499 (15) | 0.0457 (13) | 0.0460 (15) | 0.0032 (11)  | 0.0029 (12)  | 0.0039 (11)  |
| C5  | 0.0389 (12) | 0.0430 (12) | 0.0428 (14) | -0.0014 (10) | 0.0071 (11)  | 0.0087 (11)  |
| C6  | 0.0471 (13) | 0.0471 (13) | 0.0435 (14) | 0.0033 (10)  | 0.0081 (12)  | 0.0023 (11)  |
| C7  | 0.0649 (18) | 0.0655 (18) | 0.0561 (17) | 0.0190 (14)  | 0.0137 (16)  | 0.0037 (15)  |
| C8  | 0.080 (2)   | 0.0593 (16) | 0.0500 (16) | 0.0057 (15)  | 0.0167 (16)  | -0.0031 (14) |
| C9  | 0.0597 (16) | 0.0617 (17) | 0.0464 (16) | -0.0076 (13) | 0.0107 (13)  | -0.0014 (13) |
| 01  | 0.128 (2)   | 0.0996 (19) | 0.0414 (12) | 0.0212 (18)  | 0.0181 (13)  | 0.0080 (13)  |
| C10 | 0.0410 (13) | 0.0527 (14) | 0.0430 (14) | -0.0023 (11) | 0.0067 (11)  | 0.0048 (11)  |
| C11 | 0.0475 (14) | 0.0716 (18) | 0.0660 (18) | -0.0132 (14) | 0.0093 (13)  | -0.0024 (16) |
| O2  | 0.0517 (10) | 0.0500 (10) | 0.0470 (10) | 0.0037 (8)   | -0.0007 (8)  | 0.0103 (9)   |
| C12 | 0.0601 (16) | 0.0520 (15) | 0.0464 (16) | 0.0186 (13)  | 0.0140 (14)  | 0.0063 (13)  |
| O3  | 0.0948 (17) | 0.0498 (11) | 0.0581 (13) | 0.0096 (11)  | 0.0132 (11)  | 0.0094 (10)  |
| C13 | 0.079 (2)   | 0.0689 (19) | 0.0520 (17) | 0.0173 (16)  | -0.0041 (15) | 0.0027 (15)  |
| O4  | 0.0668 (13) | 0.0433 (10) | 0.0724 (15) | 0.0070 (8)   | 0.0127 (11)  | 0.0004 (9)   |
| C14 | 0.0613 (18) | 0.0466 (16) | 0.085 (3)   | 0.0011 (13)  | -0.0078 (17) | 0.0000 (16)  |
| 05  | 0.138 (3)   | 0.0503 (12) | 0.117 (2)   | -0.0015 (14) | 0.024 (2)    | 0.0167 (14)  |
| C15 | 0.093 (3)   | 0.0586 (18) | 0.106 (3)   | 0.0127 (18)  | -0.007 (2)   | -0.0224 (19) |
|     |             |             |             |              |              |              |

## Geometric parameters (Å, °)

| C1—C2  | 1.524 (4) | С8—Н8А   | 0.9700    |
|--------|-----------|----------|-----------|
| C1—C10 | 1.528 (4) | C8—H8B   | 0.9700    |
| C1—H1A | 0.9700    | С9—О1    | 1.209 (3) |
| С1—Н1В | 0.9700    | C9—C10   | 1.526 (4) |
| C2—C3  | 1.512 (4) | C10—C11  | 1.543 (4) |
| С2—Н2А | 0.9700    | C11—H11A | 0.9600    |
| С2—Н2В | 0.9700    | C11—H11B | 0.9600    |
| 23—04  | 1.453 (3) | C11—H11C | 0.9600    |
| C3—C4  | 1.523 (4) | O2—C12   | 1.346 (3) |
| С3—Н3  | 0.9800    | C12—O3   | 1.193 (4) |
| C4—C5  | 1.533 (3) | C12—O3   | 1.193 (4) |
| C4—H4B | 0.9700    | C12—C13  | 1.485 (4) |
| C4—H4A | 0.9700    | C13—H13A | 0.9600    |

| C5—C6                   | 1.527 (3)   | С13—Н13В                 | 0.9600    |
|-------------------------|-------------|--------------------------|-----------|
| C5—C10                  | 1.554 (3)   | С13—Н13С                 | 0.9600    |
| С5—Н5                   | 0.9800      | O4—C14                   | 1.340 (4) |
| C6—O2                   | 1.452 (3)   | C14—O5                   | 1.200 (4) |
| C6—C7                   | 1.523 (4)   | C14—O5                   | 1.200 (4) |
| С6—Н6                   | 0.9800      | C14—C15                  | 1.492 (5) |
| С7—С8                   | 1.526 (4)   | C15—H15A                 | 0.9600    |
| С7—Н7В                  | 0.9700      | C15—H15B                 | 0.9600    |
| C7—H7A                  | 0.9700      | C15—H15C                 | 0.9600    |
| C8—C9                   | 1.502 (4)   |                          |           |
| C2—C1—C10               | 113.2 (2)   | С7—С8—Н8А                | 108.9     |
| C2—C1—H1A               | 108.9       | С9—С8—Н8В                | 108.9     |
| C10—C1—H1A              | 108.9       | С7—С8—Н8В                | 108.9     |
| C2—C1—H1B               | 108.9       | H8A—C8—H8B               | 107.7     |
| C10—C1—H1B              | 108.9       | O1—C9—C8                 | 121.5 (3) |
| H1A—C1—H1B              | 107.8       | O1—C9—C10                | 122.1 (3) |
| C3—C2—C1                | 110.9 (2)   | C8—C9—C10                | 116.4 (2) |
| C3—C2—H2A               | 109.5       | C9—C10—C1                | 110.4 (2) |
| C1—C2—H2A               | 109.5       | C9—C10—C11               | 106.7 (2) |
| C3—C2—H2B               | 109.5       | C1-C10-C11               | 110.3 (2) |
| C1—C2—H2B               | 109.5       | C9—C10—C5                | 108.8 (2) |
| H2A - C2 - H2B          | 108.1       | C1—C10—C5                | 107.7 (2) |
| 04—C3—C2                | 111.8 (2)   | C11-C10-C5               | 113.0 (2) |
| 04—C3—C4                | 105.9 (2)   | C10-C11-H11A             | 109.5     |
| $C_{2} - C_{3} - C_{4}$ | 111.9 (2)   | C10-C11-H11B             | 109.5     |
| 04—C3—H3                | 109.1       | H11A—C11—H11B            | 109.5     |
| С2—С3—Н3                | 109.1       | C10-C11-H11C             | 109.5     |
| С4—С3—Н3                | 109.1       | H11A—C11—H11C            | 109.5     |
| C3—C4—C5                | 109.8 (2)   | H11B—C11—H11C            | 109.5     |
| C3—C4—H4B               | 109.7       | $C_{12} - C_{2} - C_{6}$ | 117.5 (2) |
| C5—C4—H4B               | 109.7       | 03 - C12 - O2            | 123.5 (3) |
| C3—C4—H4A               | 109.7       | O3—C12—O2                | 123.5 (3) |
| C5—C4—H4A               | 109.7       | O3—C12—C13               | 126.0 (3) |
| H4B—C4—H4A              | 108.2       | O3—C12—C13               | 126.0 (3) |
| C6—C5—C4                | 113.18 (19) | 02-C12-C13               | 110.4 (3) |
| C6—C5—C10               | 111.9 (2)   | С12—С13—Н13А             | 109.5     |
| C4—C5—C10               | 111.34 (19) | С12—С13—Н13В             | 109.5     |
| С6—С5—Н5                | 106.7       | H13A—C13—H13B            | 109.5     |
| С4—С5—Н5                | 106.7       | С12—С13—Н13С             | 109.5     |
| C10—C5—H5               | 106.7       | H13A—C13—H13C            | 109.5     |
| O2—C6—C7                | 109.1 (2)   | H13B—C13—H13C            | 109.5     |
| O2—C6—C5                | 105.94 (19) | C14—O4—C3                | 117.1 (3) |
| C7—C6—C5                | 110.1 (2)   | O5—C14—O4                | 123.2 (3) |
| О2—С6—Н6                | 110.5       | O5—C14—O4                | 123.2 (3) |
| С7—С6—Н6                | 110.5       | O5—C14—C15               | 124.9 (3) |
| С5—С6—Н6                | 110.5       | O5—C14—C15               | 124.9 (3) |
| C6—C7—C8                | 111.7 (2)   | O4—C14—C15               | 111.9 (3) |
| С6—С7—Н7В               | 109.3       | C14—C15—H15A             | 109.5     |
| С8—С7—Н7В               | 109.3       | C14—C15—H15B             | 109.5     |
|                         |             |                          |           |

# supplementary materials

| C6—C7—H7A<br>C8—C7—H7A<br>H7B—C7—H7A<br>C9—C8—C7 | 109.3<br>109.3<br>107.9<br>113.5 (3)                                   | H15A—C15—H15B<br>C14—C15—H15C<br>H15A—C15—H15C<br>H15B—C15—H15C |              | 109.5<br>109.5<br>109.5<br>109.5 |
|--------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|----------------------------------|
| С9—С8—Н8А                                        | 108.9                                                                  |                                                                 |              |                                  |
| Hydrogen-bond geometry (Å °)                     |                                                                        |                                                                 |              |                                  |
|                                                  | D U                                                                    | <b>TT</b> (                                                     |              | D II (                           |
| D—H···A                                          | <i>D</i> —Н                                                            | H···A                                                           | $D \cdots A$ | D—H···A                          |
| С7—Н7А…О3                                        | 0.97                                                                   | 2.65                                                            | 3.143 (4)    | 112                              |
| C8—H8B···O3 <sup>i</sup>                         | 0.97                                                                   | 2.62                                                            | 3.551 (4)    | 161                              |
| C13—H13C···O3 <sup>ii</sup>                      | 0.96                                                                   | 2.63                                                            | 3.533 (4)    | 156                              |
| С2—Н2В…О5                                        | 0.97                                                                   | 2.65                                                            | 3.134 (4)    | 111                              |
| C8—H8A···O5 <sup>iii</sup>                       | 0.97                                                                   | 2.44                                                            | 3.309 (4)    | 149                              |
| C11—H11A····O5 <sup>iii</sup>                    | 0.96                                                                   | 2.70                                                            | 3.662 (4)    | 178                              |
| Symmetry codes: (i) $x, y, z+1$ ; (ii) $-x+1$    | /2, <i>y</i> -1/2, - <i>z</i> ; (iii) <i>x</i> , <i>y</i> +1, <i>z</i> | ·.                                                              |              |                                  |



Fig. 2

